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Abstract

This article documents the method of synthetic constraint, a physical principle, to be applicable in the fundamental methodology of
conductive heat flow, in replacement of calculus of variations and other optimal control theories. In particular, the optimum distribution
of limited volume of insulating material on one side of a plane wall as well as cylindrically curved surface is obtained when the amount of
insulating material is noninfluential to the imposed exponential temperature profile. The same physical theory is exercised for a general-
ized case of a stream suspended in an environment of different temperature and where the exponential wall temperature distribution is
affected by the amount of insulation added. The result obtained conforms to those existing in open literature. Further from the physics of
the problem it has been argued that a minimum exists for such class of problems of heat transfer from an insulated wall. Finally, it has
been synthesized that Schmidt’s criterion for the fin design, the tangent law of conductive heat transport and Fermat’s principle in geo-
metrical optics are but special stipulations of the method of synthetic constraint, which in turn is a corollary of constructal law. Thus the
basis for analogies among physical theories is sought. The fundamental solution exhibits a category of equipartition principle.
� 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

The problem of optimization is the very essence of real-
ity [1,2]. It is well known that many physical theories nat-
urally give rise to variational optimization principle from
which the governing equations of the system can be
deduced. The class of theories which do not yield a sponta-
neous variational formulation on account of nonlinearity
or else can be modified to admit a variational form [3].
Inversely also it follows at once that the laws of physical
theories when expressed as differential equations, the possi-
bility of their reduction to a variational principle is evident
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from purely mathematical reasoning and does not depend
on certain attributes intrinsic in the theory [4].

Despite these mathematical assertions, remarkably the
classical thermodynamics [5,6] usually formulated is devoid
of variational principles. However, it can be shown that as
far as the implications for quasistatic transitions are con-
cerned the second law can be formulated as a variational
principle [7]. In classical mechanics it can be established
that by means of Gauss’s principle [8] all problems may
be reduced to those pertaining to maxima and minima
and hence possibly to a problem of variational calculus.
Thus the variational technique as an optimization proce-
dure has undergone tremendous upsurge both in science
and engineering [9–13].

But the physicists and engineers often seem to disagree
about the meaning of a variational principle [14]. For
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Nomenclature

a constant, Eq. (43)
DA elemental surface area, Eq. (2a)
b constant, Eq. (43)
Brx local Brun number, Eq. (45)
C constant, Eq. (43)
Cra constant, Eq. (2b)
Csa constant, Eq. (2a)
Crv constant, Eq. (1b)
Csv constant, Eq. (1a)
CT constant, Eq. (31)
F function of insulation thickness, Eq. (15a)
h local convective heat transfer coefficient
hi heat transfer coefficient between stream and

cylindrical wall, Eq. (32a)
h0 heat transfer coefficient between insulation and

ambient, Eq. (32a)
i particular segment
k local conductivity of insulating material
ki conductivity of insulating material, Eq. (32a)
kw conductivity of cylindrical wall, Eq. (32a)
L wall length
m number of segments
n parameter determining wall temperature curva-

ture
Nux local Nusselt number, Eq. (43)
Dq local heat transfer rate
DQ form of local heat transfer rate, Eq. (3)
r outer radius of cylindrical wall
t insulation thickness
T wall temperature
Tf fluid stream temperature
TL wall temperature at x = L

T0 wall temperature at x = 0
Tw interfacial wall temperature, Eq. (40)
DT local temperature gradient

t1l optimal thickness distribution, Eq. (21)
t2l optimal thickness distribution, Eq. (22)
t3l optimal thickness distribution, Eq. (23)
U overall heat transfer coefficient, Eq. (32a)
Dv form of elemental insulation volume, Eq. (3)
V volume of insulating material
DV elemental insulation volume
W wall width
x longitudinal coordinate

Greek symbols

d nondimensional parameter, Eq. (26b)
dT thermal boundary layer thickness
D dimensionless parameter, Eq. (27c)
e correction factor, Eq. (41)
k numerical and dimensional factor, Eqs. (1a) and

(1b)
K1 parametric group, Eq. (19)
K2 parametric group, Eq. (27a)
K3 parametric group, Eq. (29a)
K4 parametric group, Eq. (30a)
l numerical and dimensional factor, Eqs. (2a) and

(2b)
h1 angle of incidence, Eqs. (37b), (37c)
h2 angle of refraction, Eqs. (37b), (37c)
w numerical and dimensional factor, Eq. (3)

Subscripts

opt optimal, Eq. (35)
1 refers to wall
2 pertains to insulation

Superscript

– averaged nondimensional quantity
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physicists the fundamental element is generally the existence
of a Lagrangian function through which the governing
equations of the system are obtained by taking the func-
tional derivatives. The main appeal of Lagrange function
is its power of synthesis. The whole physics of the problem
is expressed in terms of a single function. But the Lagrang-
ian in our extended sense exists only for dissipative systems.
On the other hand, for engineers the main point often seems
to be the existence of a variational technique, as clearly indi-
cated by the type of approximation methods [15] employed
in engineering optimization which are largely independent
of the existence of a Lagrange function.

Variational principle can also be formulated [16] outside
the postulate of minimum entropy production [17] and the
concept of local potential [17]. Quite apart from variational
formulation a wide class of practical optimization prob-
lems can be expressed in the form of Pontryagin maximum
principle [19]. It is reported that the attempts to solve these
problems by the method of classical calculus of variations
are not attractive [20].

An optimization procedure, such as variational method
is usually carried out halfway that is the values of the
parameters of a trial function are found for which a prop-
erty of the system under consideration, such as the energy
reaches its optimum value [21]. This has limited the pro-
gress of variational formulation and solution of related
problems. Admittedly, if we do not succeed in solving a
mathematical problem, it is often because we have failed
to recognize the more general standpoint from which the
problem before us appears as a single link in a chain of
related problems. This way to find general methods is cer-
tainly the most practical and the surest, for he who seeks
the method without having a definite problem in mind
seeks in vain [22]. Thus the current research methodology
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Fig. 1. Plane with arbitrary temperature profile and insulation
distribution.
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emphasizes on the physical understanding of the problem
in thermodynamic optimization of systems in particular
[23]. Effort in this direction has been made to the design
of conjugate conductive–convective coupled insulation
system.

The present contribution explores the method of syn-
thetic constraint [23], a physical principle, to the design
of conductive insulation systems, which was recently ana-
lyzed by the formal method of calculus of variation [24].
Thermodynamic optimization of insulation system is also
historically important and still remains an active research
frontier in contemporary heat transfer research. It is histor-
ically important because the chronology of entropy gener-
ation minimization field [25] began with the design of
insulation systems subject to finite-size constraint [26]. It
is an active area of research since power plant and refriger-
ation unit can be regarded as thermal insulation system [27]
while accepting the general definition that the thermal insu-
lation is a system that prevents two surfaces of different
temperatures from coming into direct thermal communica-
tion. From the physical perspective of the problem it has
been demonstrated that for such a class of optimization
problem a truly minimum exists. Finally it has been argued
that there should be some basis for analogies among phys-
ical theories [28]. Being persuaded by such basis the rela-
tion among the method of synthetic constraint [23],
Fermat principle [29,30] and constructal law [31,32] from
which geometric forms [33] can be deduced out of a single
physics principle [31,32] is sought.

2. The physical principle in conduction heat transfer

To engineer the nature is to understand her first. In this
endeavor we seek continually a more general principle than
the existing till an all-encompassing theory is established.
The speculative way of seeking a new law is but to guess
it first [34]. Recently proposed method of synthetic con-
straint [23] is an effort in this directive. In a nutshell this
principle enunciates to identify the ‘‘conservation” of some
physical quantities as a physical principle of thermody-
namic optimization. Existence of such ‘‘isolines” is one of
the most fundamental characteristics of extremality.
Guided by this line of thought we proceed to identify the
contributing competing mechanisms that constitute the
locus of the physical process path describing the isoline.

To illustrate the rudimental feature of this principle we
first consider a plane wall of length L and width W perpen-
dicular to the plane of the paper as is shown in Fig. 1. The
wall temperature variation T(x) is only along the longitudi-
nal direction x. The fundamental question corners around
how to distribute a finite amount of insulating material
either with constant or varying thickness t(x) on the wall
for minimum heat loss.

The insulated wall can be thought of being pieced into m

equal or unequal length of sections. The more the local dis-
tribution of unit insulation material DV, the less is the local
heat transfer rate Dq in general. On the other hand making
a particular segment of the wall more effective leads other
parts of the wall to be less effective in insulation. Thus
we identify heat transfer and insulation volume to be two
competing physical factors (forces, motives) in insulation
design. Hence, the legitimate postulate should be the uni-
form (equal) effectiveness of the insulation. This heuristic
logic translates mathematically into

Dqi þ kiDV ¼ Dqþ kDV ¼ Csv ð1aÞ

for i = 1,2,3, . . . ,m and where Csv is a constant. We drop
the subscript i for equal segmentation. Here k is a numer-
ical and dimensional factor which makes the volume, a
physical quantity, to be dimensionally homogeneous with
another physical quantity heat. The far reaching conse-
quences of this parameter in a greater perspective are to
be realized [35]. The order of magnitude of the parameter
k is such that for which the problem of optimization is non-
trivial. Hypothetically there may be some portion of the
wall not covered with insulation at all, meaning k = 0 as
is in the leading and trailing edges of the wall. On the con-
trary, all insulation material can be applied on to a limited
spot, leading k > 0. Thus from the physical point of view
the dimensional scale factor k is bounded only in the
domain [0,1]. To realize in another way the role played
by k, Eq. (1a) may be written in an alternative fashion
when one of the constituents leads to a constant as

Dqi

kiDV
¼ Dq

kDV
¼ Crv ð1bÞ

for i = 1,2,3, . . . ,m and where Crv is another constant.
Notationally the subscript is dropped for equal segmenta-
tions as before. It can be seen that for k ? 0, the constant
on the right side of Eq. (1b) tends to a very high value
meaning a very high rate of heat transfer as is also indi-
cated by Eq. (1a) and thus not a desirable feature of mod-
eling. On the other hand, for k ?1 the constant on the
right side of Eq. (1b) runs to a very low value implying a
very low heat transfer as is also implied by Eq. (1a) and
thus ensures a favorable modeling feature. But at the same
time for the optimization problem to be nontrivial, the
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material volume cannot be unlimited or scarce posing a
restriction to the upper and lower bound for the value of
k too.

Either Eq. (1a) or Eq. (1b) can be employed, as the case
may be for the ease of computation or applicability, to
obtain optimal profile of insulation in connection with
minimum heat transfer from the wall with definite curva-
ture and temperature profile.

If we consider insulating a line element instead of a
plane wall, Eqs. (1a) and (1b) transforms respectively into

Dqi þ liDA ¼ Dqþ lDA ¼ Csa ð2aÞ

and

Dqi

liDA
¼ Dq

lDA
¼ Cra ð2bÞ

where the volume element (DV) is replaced by the surface
area element (DA) and the dimensional role of l has been
changed to that of k.

It is interesting to report that Eq. (2b) resembles
Schmidt’s idea [36] of optimum profile shape for cooling
fin with minimum weight. At the same time it is to be noted
that Schmidt’s criterion were obtained upon a different
heuristic logic. The intuitive logic of Schmidt was con-
firmed through rigorous variational formulation by Duffin
[37]. Jany and Bejan [38] appeared at the conclusion that
the idea of fin shape optimization has an important analog
in the design of long ducts for fluid flow.

It is quite thought provoking that the problem for max-
imum heat transfer objective resembles to the challenge of
insulation design for minimum heat transfer. It truly
reflects the opposing action of two motive forces [39] in
apparently two antagonistic arrangements. The physical
factor which transcribes a problem of insulation into a
question of fin is the curvature of the surface in consider-
ation. For example critical insulation thickness [40] exists
only in reality for the design of cylindrical and spherical
layers, but not in the sizing of plane or nearly plane layers.
Thus we repeat the symmetric appearance of a physical
principle [41,42] with respect to its foundation in mathe-
matical terms [28].

3. The physical basis for minimum heat transfer in insulation

The criteria for distinguishing between the maximum
and minimum values of the functional have been investi-
gated by many eminent mathematicians [43]. A rigorous
mathematical discussion of the discriminating conditions
may be found from the fundamental principle alone [44].
In our present endeavor we will however, provide a physi-
cal basis for the existence of the extremum. To be specific
with the domain of application of this analysis we take
the example of purely conductive insulation system.

From the physical perspective heat transfer and insula-
tion volume are both nonnegative quantities. It is to be
noted that we did not adopt here a control volume
approach so as to regard heat transfer as positive or nega-
tive with respect to the system in a conventional manner.
Again Eq. (1a) truly represents a competition between
two opposing tendencies of the system. Further their con-
stancy of summation leads to the fact that increment of
one quantity drives to the decrement of the other in numer-
ical estimate. These logics translate into the following
mathematical prescriptions:

Dq ¼ DQ2; DV ¼ Dv2 and k ¼ �w: ð3Þ

Thus Eq. (1a) transforms into

DQ2 � wDv2 ¼ Csv: ð4Þ

Since we are interested in global extremum, integrating
upon Eq. (4) over the entire length of the plate we haveZ L

0

ðDQ2 � wDv2Þdx ¼ CsvL: ð5Þ

As indicated by the first example of the use of trigonomet-
ric series in the theory of heat [45] we adopt Fourier expan-
sion [46] for the pattern of distribution of insulating
material in primitive variables to be

Dv ¼
X1
m¼1

am sin
mp
L

x ð6Þ

where am’s are some constants compatible with the conver-
gence of the series. Rearranging Eq. (1a) in the following
form

Dq ¼ Csv � kDV ð7Þ

and recognizing that heat transfer takes place in a normal
direction to the plane under consideration [47] we find a
compatible [48,49] Fourier series as

DQ ¼
X1
m¼1

mp
L

am cos
mp
L

x: ð8Þ

Invoking Parseval’s theorem [50] to the relations (6) and (8)
we arrive respectively atZ L

0

Dv2 dx ¼ L
2

X1
m¼1

a2
m ð9Þ

andZ L

0

DQ2 dx ¼ L
2

X1
m¼1

m2p2

L2
a2

m: ð10Þ

The mathematical prescription for the applicability of
Parseval’s theorem is that

Dvð0Þ ¼ DvðLÞ ¼ 0 ð11Þ

and DQ whose square is Lebesgue integrable [51] over the
interval [0, L]. From the physics of the problem these crite-
ria are quite recognizable. Thus incorporating Eqs. (9) and
(10) in Eq. (5) we have

Csv ¼
1

2

X1
m¼1

m2p2

L2
� w

� �
a2

m: ð12Þ
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Noting that the left hand side is a finite positive quantity
and hence there exists a minimum for the parameter w in
the range

w 6
p2

L2
: ð13Þ

It is to be remarked that the physical role [52] played by the
parameter w here is very much different than k in Eq. (1a).
The physical argument presented above has an easy exten-
sion to the Sturm–Liouville theory [53]. Thus we conclude
that a truly minimum exists for this problem of insulation
design. Next we will calculate only the optimum profile for
different geometries and temperature distributions. Once
thus obtained optimum profile tallies with the established
results the minimum heat transfer quantity follows at once.

4. Temperature distribution and heat transfer from an
insulated wall

In many engineering applications [24] a nonlinear tem-
perature variation T(x) in the longitudinal direction x of
the wall of finite length arises with definite curvature
d2T/d2x. When the curvature of the wall temperature func-
tion is positive, temperature profile of the wall can be out-
lined as

T ðxÞ � T 0

T L � T 0

¼
exp n x

L

� �
� 1

en � 1
ð14aÞ

where T0 and TL are wall temperatures at x = 0 and x = L

respectively and the nondimensional parameter n bears the
same sign with the curvature of the wall temperature func-
tion. Here T0 is also the ambient temperature. For the
curvature of the temperature function of the wall to be neg-
ative, temperature distribution of the wall can be expressed
algebraically as

T ðxÞ � T 0

T L � T 0

¼
1� exp n x

L

� �
1� en

: ð14bÞ

In case of vanishingly small curvature of temperature func-
tion, passing to the limit n ? 0 either from Eq. (14a) or Eq.
(14b) we obtain by applying L’Hospital’s theorem a linear
temperature distribution as

T ðxÞ � T 0

T L � T 0

¼ x
L
: ð14cÞ

On the other hand the mathematical advantage of the
exponential representation of temperature is that it can
be readily treated as differential equation [54]. Hence it
may be possible to cast the whole exercise as a control
problem of differential equation alone [55].

Recognizing the local temperature gradient DT =
T(x) � T0 to be the cause of spontaneous heat transfer
effect Dq in a coupled conductive–convective formulation
[23] the expression for heat transfer stands as

Dq ¼ DT
F ½tðxÞ�
kDA þ 1

hDA

ð15aÞ
where DA is the elemental heat transferring area, k is the
constant thermal conductivity of the insulating material,
h is the local convective heat transfer coefficient, t(x) is
the local thickness of insulation and F[t(x)] is the function
of insulation thickness. Passing to the limit h ?1 in Eq.
(15a) we arrive at

lim
h!1

Dq ¼ lim
h!1

DT
F ½tðxÞ�
kDA þ 1

hDA

¼ DT
F ½tðxÞ�
kDA

: ð15bÞ

Eq. (15a) is connected to Eq. (15b) in the same manner as
the two-dimensional problem of heat transfer is related to
the one-dimension when either of the dimensions is very
great in comparison with the other.

In mathematical modeling of the problem we have both
the choices: either to consider or not the effect of local insu-
lation thickness on the driving force (DT) for the heat
transfer.

5. Insulation on plane surface with static wall temperature

condition

By static wall temperature condition we mean that the
temperature distribution on the wall will not be affected
by the amount of insulation mounted. We consider here
a plane wall of length L and width W. The average insula-
tion thickness �t can be defined as

�t ¼ V
WL
¼ 1

L

Z L

0

tðxÞdx: ð16Þ

In Eq. (15b) we recognize for a plane wall that

F ½tðxÞ�
DA

¼ tðxÞ
W dx

: ð17Þ

Now, employing the physical principle (1b) in Eq. (15b)
along with Eq. (17) we directly obtain

tðxÞ ¼ k
k

� �1=2

DTð Þ1=2
: ð18Þ

For linear temperature distribution, invoking Eq. (14c) in
Eq. (18) we arrive at

tðxÞ ¼ K1

x
L

� �1=2

ð19Þ

where K1 is the shorthand for the constant k
k T L � T 0ð Þ
� 	1=2

.
Integrating Eq. (19) between 0 and L and employing Eq.
(16) for the definition of average thickness we have

K1 ¼
3

2
�t: ð20Þ

Optimal insulation profile is obtained by eliminating the
constant K1 between Eqs. (19) and (20) as

t1l xð Þ ¼ 3

2
�t

x
L

� �1=2

: ð21Þ

When the curvature of the wall temperature function is po-
sitive, employing Eq. (14a) in Eq. (18) and adopting similar
procedure we get optimal insulation function as
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t2lðxÞ ¼
n
2

�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
exp n x

L

� �
� 1

q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
en � 1
p

� tan�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
en � 1
p : ð22Þ

For the curvature of the wall temperature profile to be neg-
ative recruiting Eq. (14b) in Eq. (18) similarly we obtain the
optimal insulation profile as

t3lðxÞ ¼
n
2

�t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� exp n x

L

� �q
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� en
p

� tanh�1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� en
p : ð23Þ
6. Insulation on cylindrical surface with static wall

temperature condition

As stated before static wall temperature condition
implies that the temperature of the wall is not a function
of insulation volume. We consider now a cylinder of radius
r and length L. Geometrically we mean a situation with the
surface of revolution of the plane wall mounted with arbi-
trary insulation volume along with a translation in the ver-
tical direction. Such a description bears an easy extension
of the fundamental problem presented in Fig. 1. Then the
fixed volume V of insulation is rendered by

V ¼
Z L

0

pr2 1þ tðxÞ
r

� �2

� 1

( )
dx: ð24aÞ

The relative thickness of insulation material is obtained in
dimensionless form as

V ¼ V
pr2L

¼ 1

L

Z L

0

1þ tðxÞ
r

� �2

� 1

( )
dx: ð24bÞ

When the wall thickness is not negligible relative to the ra-
dius of the curvature of the wall surface, the problem must
be analyzed by a method that takes the curvature into ac-
count. In Eq. (15b) we identify for a cylindrical wall [56]

F ½tðxÞ�
DA

¼
ln 1þ tðxÞ

r

h i
2pdx

: ð25Þ

Plugging Eq. (25) in lieu of Eq. (15b) along with Eq. (24a)
into the physical principle (1a) we get the optimal insula-
tion profile to comply with the following condition

d ln d ¼ k
kr2

� �1=2

ðDT Þ1=2 ð26aÞ

where

dðxÞ ¼ 1þ tðxÞ
r
: ð26bÞ

Assuming a linear temperature distribution (14c) in Eq.
(26a) we obtain

d ln d ¼ K2
x
L

� �1=2

ð27aÞ

where K2 is the notation for the parameter k
kr2 T L�ð
�

T 0Þ�1=2.
The constant K2 is determined from the definition (24b) as
K2 ¼
2

V

Z D

1

dðd2 � 1Þ ln d lnðedÞdd

� �1=2

ð27bÞ

where

D ¼ 1þ toptðLÞ
r

: ð27cÞ

Eliminating the constant K2 between Eqs. (27a) and (27b)
optimal insulation profile is obtained as

d ln d ¼ 2

V

Z D

1

dðd2 � 1Þ ln d lnðedÞdd

� �1=2
x
L

� �1=2

: ð28Þ

In the event of positive wall temperature curvature
recruiting Eq. (14a) in Eq. (26a) we have

d ln d ¼ K3 exp n
x
L

� �
� 1

h i1=2

ð29aÞ

where K3 is the shorthand for the group k
kr2

T L�T 0

en�1

� 	1=2
. The

constant K3 is implicitly determined using the definition
(24b) as

2

n

Z D

1

dðd2 � 1Þ ln d lnðedÞ
ðd ln dÞ2 þ K3

dd ¼ V : ð29bÞ

Eliminating the constant term K3 from Eqs. (29a) and (29b)
we obtain the required optimum insulation profile.

Similarly, for negative curvature of the wall temperature
function employing Eq. (14b) in Eq. (26a) and exercising
the same procedure we obtain the optimal profile of insula-
tion as the eliminant of the parametric constant K4 between
the following equations

d ln d ¼ K4 1� exp n
x
L

� �h i1=2

ð30aÞ

and

2

n

Z D

1

dðd2 � 1Þ ln d lnðedÞ
ðd ln dÞ2 � K4

dd ¼ V ð30bÞ

where K4 is the shorthand for the constant k
kr2

T L�T 0

1�en

� 	1=2
.

7. Insulation on cylindrical surface with dynamic wall

temperature condition

Unlike in Sections 5 and 6, we consider here a dynamic
local temperature gradient situation for the wall. In other
words, we do not neglect the effect of local insulation thick-
ness on the local temperature distribution. Rather we
impose the more realistic condition that the local tempera-
ture distribution is affected by the amount of insulation.
Now, as a modeling feature we are at liberty to apply insu-
lation in such a way that the local temperature potential
remains piecewise constant i.e. DT 6¼ DT(x). This makes
in turn the local overall heat transfer coefficient U to be
independent of longitudinal spatial position that is again
U 6¼ U(x). This idea of equipartitioned potential difference
is directly borrowed from our recent work [57].

Let us consider a stream of fluid with local temperature
distribution Tf(x) passing through an insulated cylindrical
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tube whose outer surface is exposed to a constant environ-
ment temperature T0 such that

DT ¼ T fðxÞ � T 0 ¼ CT ð31Þ

where CT is a constant.
The expression for overall heat transfer coefficient

between the local bulk temperature of the stream Tf(x)
and the environment at T0 can be readily obtained from
any standard heat transfer textbook [56] as

1

U2pr dx
¼ 1

h02p½r þ tðxÞ�dx
þ

ln 1þ tðxÞ
r

h i
ki2pdx

þ tw

kw2pr dx
þ 1

hi2pr dx
ð32aÞ

where hi and h0 are the local convective heat transfer coef-
ficients for the inner fluid and the outer fluid, ki and kw are
the conductivities of the insulating material and cylinder
wall respectively, r is the inner radius of the wall, tw is
the thickness of the wall. Recognizing the fact that hi,
h0 ?1 and tw

r ! 0, we pass on to these limits in Eq.
(32a) to obtain

1

U2pr dx
¼

ln 1þ tðxÞ
r

h i
ki2pdx

: ð32bÞ

Putting Eq. (32b) in Eq. (25) along with Eq. (15b) into the
physical principle (1a) we obtain

DT
U2pr

þ kpr2 1þ tðxÞ
r

� �2

� 1

( )" #
dx ¼ constant: ð33aÞ

By definition DT and U are constant and since dx can be
arbitrarily small, the bracketed quantity on the right side
vanishes identically i.e.

DT
U2pr

þ kpr2 1þ tðxÞ
r

� �2

� 1

( )
¼ 0: ð33bÞ

Since t(x) is the only variable on the left side, the physical
solution of the equation leads to the fact that

tðxÞ ¼ constant: ð34Þ

The constant of the right side of Eq. (34) is determined
from Eq. (24b) as

topt ¼ r 1þ V
� �1=2 � 1
h i

: ð35Þ

Eq. (35) is an important result and was obtained using the
calculus of variations [24] and optimal control theory [59]
as reported in literature as well as traditionally practiced
by engineers.

8. Synthetic constraint, Fermat’s principle and the

constructal law

For two different materials of the wall and the insulating
volume to be in perfect thermal contact, the interfacial
boundary conditions demand that [60]
�k1

oT 1

oy

� �
0þ
¼ �k2

oT 2

oy

� �
0�

ð36aÞ

and

T 1 ¼ T 2 ð36bÞ
where the subscripts 1 and 2 refers to the general wall and
the insulating material respectively. Eq. (36a) can be writ-
ten as

oT 1

oy

� �
0þ

oT 2

oy

� �
0�

¼ k2

k1

ð37aÞ

which readily admits the following form

tan h1

tan h2

¼ k2

k1

ð37bÞ

where h1 and h2 are the angles of incidence and refraction
respectively. In turn for small angles Eq. (37b) can also
be written as

sin h1

sin h2

¼ k02
k01

ð37cÞ

where k01 and k02 can be thought of as modified thermal con-
ductivities. However, the approximate form of Eq. (37b)
reads as

sin h1

sin h2

� k2

k1

ð37dÞ

for small angles of incidence and refraction. For constant
thermal conductivities each of the form contained in Eq.
(37a)–(37c) can be represented respectively as

oT 1

oy

� �
0þ
þ oT 2

oy

� �
0�
¼ constant ð38aÞ

tan h1 þ tan h2 ¼ constant ð38bÞ
and

sin h1 þ sin h2 ¼ constant: ð38cÞ
It is to be noted that the message contained in Eqs. (38a)–
(38c) are but principally the one and the same: the very
proposition of synthetic constraint. Further it is to be
noted that Eq. (37b) is a consequence of tangent law in heat
conduction [61] whereas Eq. (37c) is an outcome of
Fermat’s principle and also modelled through dynamic
programming approach [62].

Comparing Eq. (37b) with (37d) we observe that there is
a sacrifice of degree of accuracy. This criterion of accuracy
is to be judged from the pertinent application in question.
For example let us consider the more generalized situation
of coupled conductive–convective heat transport mecha-
nism [23]. Approximation of surface heat flux at the solid
surface of the form

�k1
oT 1

oy

� �
0þ
� k1 DT 1ð Þ�t

�t
ð39Þ

is valid for a linear temperature distribution across the wall
according to the following relation
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T 1 ¼ T wðxÞ þ
ðDT 1Þ�t

�t
ð40Þ

where the subscript w refers to the interfacial condition
based upon average thickness �t of the insulation volume.
According to the theory of similarity [63] for a nonlinear
temperature variation across the wall we may write

oT 1

oy

� �
0þ
� e
ðDT 1Þ�t

�t
ð41Þ

where e is a correction factor for the distorted temperature
profile. The slope on the right side of Eq. (41) is a single-
valued function of ðDT 1Þ�t

�t . Eqs. (36a) and (41) can be rear-
ranged into the form

ðDT 1Þ�t
ðDT 2ÞdT

¼ e
k2

k1

t
x

x
dT

ð42Þ

where dT is the thermal boundary thickness of the medium.
Approximate general local Nusselt number correlation can
be expressed in the form

Nux ¼
x
dT

¼ CPraReb
x ð43Þ

where a, b and C are some constants. Thus the relative tem-
perature drop term ðDT rÞ�t contained in Eq. (42) is express-
ible as

ðDT rÞ�t ¼
ðDT 1Þ�t
ðDT 2ÞdT

¼ eCf
k2

k1

t
x

PraReb
x

� �
: ð44Þ

Clearly ðDT rÞ�t is a single-valued function of the parametric
group

Brx ¼
k2

k1

t
x

PraReb
x ð45Þ

known as local Brun number. This local Brun number cri-
terion [64] determines the degree of accuracy surrendered
solving a conjugate problem as nonconjugate one.

In view of this engineering approximation either of Eqs.
(37a)–(37c) or (37d) can be quantitatively treated in the
form of unrestrictive synthetic constraint as

h1 þ h2 ¼ constant: ð46Þ

However, qualitatively ordinary optical rays obey Riem-
manian geometry while thermal rays are described by Fin-
slerian geometry [65]. In Eqs. (37b) and (37d) it is being
revealed that between tangent law of heat conduction
and Fermat’s principle in optics there exists difference only
in the degree of accuracy. Philosophically they are but the
same: the unique optimization strategy of nature. Compar-
ing Eqs. (37b) and (37c) it can be perceived that the tangent
law of conductive heat transfer pertaining to a combination
of mediums (k1,k2) is equivalent to Fermat’s principle of
optics to an altered combination of mediums ðk01; k02Þ. Un-
like point-to-point flow the demarcation between Fermat
type flow and the constructal law is well established in
the pertinent literature [57,66]. The Fermat type principle
can be treated as a corollary of constructal law. It is also
to be remarked that the method of synthetic constraint rep-
resents a category of equipartition [23,57,67,68] principle in
some macroscopic domain with some finite time and length
scale.

9. Conclusions

There has been mathematical studies towards the non-
standard methods in the calculus of variations [69]. How-
ever, the present study is under the proposition of a
physical theory: the method of synthetic constraint [23].
It has been suggested in some authoritative treatises that
in many problems where we only want a few values of
the nonlinear partial differential equation, we can solve
the associated variational problems instead [70]. Method
of synthetic constraint is a justification on the physical
basis in this direction.

Specifically the method of synthetic constraint has been
exploited to a class of purely conductive system where
some limited amount of insulating material is to be distrib-
uted over a plane wall or cylindrically curved surface with
arbitrary temperature distributions for minimum heat
transfer. The method is also extended to a more generalized
situation of a stream suspended in an environment of dif-
ferent temperature and where the wall temperature distri-
bution is affected by the amount of insulation added. The
results obtained are in conformity with those reported in
literature [24,59]. The equivalence of the result obtained
in applying the variational principle for a prescribed tem-
perature history to that obtained for a prescribed heat flux
is well established in pertinent literature [71].

From the physics of such class of extremum problems it
has been argued that a truly minimum exists. However, the
quantification of minimum heat transfer has not been
reported here. Once the optimum profile of insulation is
obtained the minimum heat transfer quantity follows read-
ily from the routine procedure and is available in the liter-
ature [24]. Since any distribution pattern of insulting
material can be represented by a Fourier series, it has been
insinuated that such class of conductive minimum heat
transfer problems pertain to a category of Sturm–Liouville
system.

Finally, from a summation from of synthetic constraint,
a ratio form is derived when one of the constituent compet-
ing mechanisms turns out to be a constant. Thus the ratio
form of synthetic constraint is more restrictive than its
summation counterpart. It turns out to be a mathematical
fact that when the ratio form is valid the summation form
is spontaneously granted but not the vice versa. In view of
this argument Schmidt’s criterion for the fin design, the
tangent law of conductive heat transport and the Fermat’s
law of geometrical optics obey the principle of synthetic
constraint which in turn is a corollary of constructal law.
Thus the basis for analogies among some physical theories
is sought. The fundamental feature of this optimization is
but a category of macroscopic organization with a class
of equipartition principle [23,57,67,68].
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Theory of Shape and Structure, Évora Geophysics Center, University
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